
Discover
the potential of Elixir

Real world use case



Hello
Damián Le Nouaille-Diez

● @damln (twitter / github)

● damln.com

● Freelance Senior Developer
(8+ years Ruby, Oouch...)



“Recently moved in BCN”



Getting real

● What can I do in Elixir 
today (not in a future 
fantasy projects)

● HashtagBattle.com: Counting 
hashtags in real time.

● Realtime? Let's play with 
Phoenix Channels!



Real 
world.

PostgreSQL

Background
Jobs

The 
Internet

Twitter APIBackground
JobsBackground
Jobs

Web

NGinx
/api/v1/count

COUNT (id)

INSERT

Digital Ocean (docker)



Goals

● Offer real time updates in 
the browser on every new 
tweet (current status: doing 
AJAX polling every 5 secs, 
not really real time).

● Resilient to network 
failures.



First steps

● Creating an empty Phoenix 
application and make it 
"run" (mix phx.server).

● Create a Dockerfile to be 
able to deploy in my current 
server with existing 
tooling.

● Connect the Phoenix app to 
the PostgreSQL database 
(needed to read data, no 
write).



Ecto is gonna be
hard to setup.

Queries will be
hard to write.

Hypothesis



“Just ship it.”



Yeah

● Idea: "When a new tweet is 
saved into PostgreSQL, send 
a message to the UI to 
update the React Component"

● Implementation:

○ BG jobs send HTTP POST requests 
to Phoenix to notify of new 
tweets

○ Phoenix broadcast the message to 
the channel for all browsers 
(with the full payload)



Config



Mapping



Query



More
Query



Ecto is gonna be
hard to setup.

● Bullshit 1
● Bullshit 2
● Refer to Bullshit 1

Queries will be
hard to write

● Bullshit 1
● Bullshit 2

Hypothesis



After

PostgreSQL

Background
Jobs

The 
Internet

Twitter APIBackground
JobsBackground
Jobs

Web

NGinx

/api/v1/count

COUNT (id)
INSERT

Phoenix

/websocket

HTTP POST (notify)
Digital Ocean (docker)



Oups

● I wanted to connect the BG 
through WebSocket directly 
to Phoenix Channel, but 
fallback to simple HTTP POST 
requests.

● Too much processing. 
Solution: Throttle request 
to compute/broadcast message 
(with ExRated)



ExRated



Controller



“Fat Controller? No.”



● Testing the app from the 
outside, complete 
integration testing.

● Functional: compile checking

● Parallel tests
(by default, super fast)

● Easy to find documentation

● FUNCTIONS AND MAPS.
THAT's IT.

● 0 bad surprises.

Joy



Test
Channels



Test
Controllers



“Peace.”



● Baby steps are possibles, total time 
from learning to production: 10 
working days. In production since 
August, 0 unexpected crashed.

● Background processing: large CSV 
files (Ruby is super bad at it), 
image processing, real time 
communication with clients.

● Failures first: helps you a lot to 
anticipate bad scenario and edge 
cases.

● Juniors: not that hard! I would love 
to have feedback about your 
experience.

Just starting.



Thanks!
All cat pictures are mine. If you 
want to use them, no problem, but 

I’ll ask a LOT of money.


